Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 123(1): 73-104, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36260784

RESUMO

Elucidating the details of the formation, stability, interactions, and reactivity of biomolecular systems under extreme environmental conditions, including high salt concentrations in brines and high osmotic and high hydrostatic pressures, is of fundamental biological, astrobiological, and biotechnological importance. Bacteria and archaea are able to survive in the deep ocean or subsurface of Earth, where pressures of up to 1 kbar are reached. The deep subsurface of Mars may host high concentrations of ions in brines, such as perchlorates, but we know little about how these conditions and the resulting osmotic stress conditions would affect the habitability of such environments for cellular life. We discuss the combined effects of osmotic (salts, organic cosolvents) and hydrostatic pressures on the structure, stability, and reactivity of biomolecular systems, including membranes, proteins, and nucleic acids. To this end, a variety of biophysical techniques have been applied, including calorimetry, UV/vis, FTIR and fluorescence spectroscopy, and neutron and X-ray scattering, in conjunction with high pressure techniques. Knowledge of these effects is essential to our understanding of life exposed to such harsh conditions, and of the physical limits of life in general. Finally, we discuss strategies that not only help us understand the adaptive mechanisms of organisms that thrive in such harsh geological settings but could also have important ramifications in biotechnological and pharmaceutical applications.


Assuntos
Archaea , Sais , Sais/química , Bactérias , Ambientes Extremos
2.
Int J Mol Sci ; 23(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35628500

RESUMO

Previous studies suggest that berberine, an isoquinoline alkaloid, has antiviral potential and is a possible therapeutic candidate against SARS-CoV-2. The molecular underpinnings of its action are still unknown. Potential targets include quadruplexes (G4Q) in the viral genome as they play a key role in modulating the biological activity of viruses. While several DNA-G4Q structures and their binding properties have been elucidated, RNA-G4Qs such as RG-1 of the N-gene of SARS-CoV-2 are less explored. Using biophysical techniques, the berberine binding thermodynamics and the associated conformational and hydration changes of RG-1 could be characterized and compared with human telomeric DNA-G4Q 22AG. Berberine can interact with both quadruplexes. Substantial changes were observed in the interaction of berberine with 22AG and RG-1, which adopt different topologies that can also change upon ligand binding. The strength of interaction and the thermodynamic signatures were found to dependent not only on the initial conformation of the quadruplex, but also on the type of salt present in solution. Since berberine has shown promise as a G-quadruplex stabilizer that can modulate viral gene expression, this study may also contribute to the development of optimized ligands that can discriminate between binding to DNA and RNA G-quadruplexes.


Assuntos
Berberina , Tratamento Farmacológico da COVID-19 , Berberina/farmacologia , DNA/química , Humanos , RNA/metabolismo , SARS-CoV-2
3.
Chemistry ; 27(39): 10048-10057, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33979454

RESUMO

The development of DNA-compatible reaction methodologies is a central theme to advance DNA-encoded screening library technology. Recently, we were able to show that sulfonic acid-functionalized block copolymer micelles facilitated Brønsted acid-promoted reactions such as the Povarov reaction on DNA-coupled starting materials with minimal DNA degradation. Here, the impact of polymer composition on micelle shape, and reaction conversion was investigated. A dozen sulfonic acid-functionalized block copolymers of different molar mass and composition were prepared by RAFT polymerization and were tested in the Povarov reaction, removal of the Boc protective group, and the Biginelli reaction. The results showed trends in the polymer structure-micellar catalytic activity relationship. For instance, micelles composed of block copolymers with shorter acrylate ester chains formed smaller particles and tended to provide faster reaction kinetics. Moreover, fluorescence quenching experiments as well as circular dichroism spectroscopy showed that DNA-oligomer-conjugates, although highly water-soluble, accumulated very effectively in the micellar compartments, which is a prerequisite for carrying out a DNA-encoded reaction in the presence of polymer micelles.


Assuntos
Micelas , Polímeros , Catálise , DNA , Polimerização
4.
Phys Chem Chem Phys ; 21(34): 18533-18540, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31429447

RESUMO

We studied the interaction of lipid membranes with the deep-sea osmolyte trimethalamine-N-oxide (TMAO), which is known to stabilize proteins most efficiently against various environmental stress factors, including high hydrostatic pressure (HHP). Small-angle X-ray-scattering was applied in combination with fluorescence and infrared spectroscopy, calorimetric and AFM measurements to yield insights into the influence of TMAO on the supramolecular structure, hydration level, lipid order as well as the phase behavior of one- and three-component model biomembranes, covering a large region of the temperature-pressure phase space. Our results show that TMAO has not only a marked effect on the conformational dynamics and stability of proteins and nucleic acids, but also on lipid bilayer systems. The gel-to-fluid phase transition is shifted to higher temperatures with increasing TMAO concentration, and the lipid order parameter increases in the fluid lipid phase. Strong H-bonding with bulk water and preferential exclusion of TMAO from the lipid headgroup region leads to a drastic loss of water in the interlamellar space of fully hydrated multivesicular lipid assemblies. HHP leads to an increase of the lipid order parameter of fluid membranes as well, resulting in an increase of the lipid length. Such effect is rather small, however, and the marked effect TMAO imposes on the interlamellar spacing of the lipid bilayers is not significantly affected by temperature and high pressure. Furthermore, the lateral organization of heterogeneous model membranes changes upon addition of the cosolvent. TMAO leads to a coalescence of lipid domains, probably due to an increase of the line tension between liquid ordered and disordered domains in such raft-like lipid bilayer structures.

5.
Chemistry ; 24(42): 10859-10867, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29808506

RESUMO

Artificial metalloenzymes (AME's) are an interesting class of selective catalysts, where the chiral environment of proteins is used as chiral ligand for a catalytic metal. Commonly, the active site of an enzyme is modified with a catalytically active metal. Here we present an approach, where the commercial proteins lysozyme (LYS) and bovine serum albumin (BSA) can be converted into highly active and enantioselective AME's. This is achieved by acylation of the proteins primary amino groups, which affords the metal salts in the core of the protein. A series of differently acylated LYS and BSA were reacted with K2 OsO2 (OH)4 , RuCl3 , and Ti(OMe)4 , respectively, and the conjugates were tested for their catalytic activity in dihydroxylation and epoxidation of styrene and its derivatives. The best suited system for dihydroxylation is fully acetylated LYS conjugated with K2 OsO2 (OH)4 , which converts styrene to 1,2-phenylethanediol with an enantioselectivity of 95 % ee (S). BSA fully acylated with hexanoic acid and conjugated with three moles RuCl3 per mole protein shows the highest ee values for the conversion of styrene to the respective epoxide with enenatioselectivities of over 80 % ee (R), a TON of more than 2500 and a yield of up to 78 % within 24 h at 40 °C. LYS has two favored selective binding sites for the metal catalyst and BSA has even three. The AME's with titanate in the active center invert the enantioselectivity of styrene epoxidation.


Assuntos
Enzimas/química , Compostos de Epóxi/química , Metaloproteínas/química , Estireno/química , Catálise , Domínio Catalítico , Metaloproteínas/metabolismo , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...